Probability and Random Processes ECS 315

Asst. Prof. Dr. Prapun Suksompong

prapun@siit.tu.ac.th
6.1 Conditional Probability

Office Hours:
BKD, 6th floor of Sirindhralai building
Tuesday $\quad 9: 00-10: 00$
Wednesday 14:20-15:20
Thursday $\quad 9: 00-10: 00$

Suppose we have a diagnostic test for a particular disease which is 99% accurate. The test gives a positive result.

What is the probability that the person actually has the disease?

News: September 2015

Disease Testing

- Suppose we have a diagnostic test for a particular disease which is 99% accurate.
- A person is picked at random and tested for the disease.
- The test gives a positive result.
- Q1: What is the probability that the person actually has the disease?
- Natural answer: 99% because the test gets it right 99% of the times.

99\% accurate test?

- Two kinds of error
- If you use this test on many persons with the disease, the test will indicate correctly that those persons have disease 99% of the time.
- False negative rate $=1 \%=0.01$

$$
1 \rightarrow 0
$$

- If you use this test on many persons without the disease, the test will indicate correctly that those persons do not have disease 99% of the time.
- False positive rate $=1 \%=0.01$

$$
0 \rightarrow 1
$$

Disease Testing: The Question

- Suppose we have a diagnostic test for a particular disease which is 99% accurate.
- A person is picked at random and tested for the disease.
- The test gives a positive result.
- Q1: What is the probability that the person actually has the disease?
- Natural answer: 99% because the test gets it right 99% of the times.
- Q2: Can the answer be 1% or 2% ?
- Q3: Can the answer be 50% ?

Disease Testing: The Answer

Q1: What is the probability that the person actually has the disease?

A1: The answer actually depends on how common or how rare the disease is!

Why?

- Let's assume rare disease.
- The disease affects about 1 person in 10,000.
- Try an experiment with 10^{6} people.
- Approximately $\mathbf{1 0 0}$ people will have the disease.
- What would the (99%-accurate) test say?

Results of the test

Results of the test

99 of them will test positive 1 of them will test negative

100 people w/ disease
Of those who test positive, only $\frac{99}{99+9,999} \approx 1 \%$ actually have the disease!

989,901 of them will test negative
9,999 of them will test positive

Tree Diagram and Conditional Probability

Tree Diagram and Conditional Probability

Tree Diagram and Total Probability Theorem

Tree Diagram and Total Probability Theorem

Bayes' Theorem: History

- Named after the Thomas Bayes (1701-61)
- Father of mathematical decision making
- Bayes studied how to compute a distribution for the probability parameter of a binomial distribution in 1740s. ≈ 250-year-old!
- His friend Richard Price edited and presented this work in 1763, after Bayes's death, as "An Essay towards solving a Problem in the Doctrine of Chances".
- Laplace independently rediscovered and extended Bayes' results in 1774.
- Over the next forty years he developed it into the form we use today.


```
the theory 
    H}\mathrm{ that would
    whtw not die 
```

how bayes' rule cracked
the enigma code,
hunted down russian submarines \& emerged triumphant from two \& centuries of controversy sharon bertsch mcgrayneor

Bayes’ Theorem: Scientific Battle

- An example of "science gone awry".
- The scientific battle over Bayes' theorem (Bayesian analysis) is lasted for 150 years.
- Respected statisticians rendered it professionally taboo
- while practitioners relied on it to solve problems
- Similar case: Geologists accumulated the evidence for Continental Drift in 1912 and then spent 50 years arguing that continents cannot move.
- Sometime during the 1740 s, Bayes made this discovery but then mysteriously abandoned it.
- Bayes' theorem began life amid an inflammatory religious controversy in England in the 1740s: can we make rational conclusions about God based on evidence about the world around us?
- Laplace gave it its modern mathematical form and scientific application and then moved on to other methods.

Bayes' Theorem

Using the concept of conditional probability and Bayes' Theorem, we can show that the probability that a (randomly selected) person will have the disease (defined as event D) given that the test result (for that person) is positive (defined as event T_{P}) is given by

$$
\begin{aligned}
P\left(D \mid T_{P}\right) & =\frac{\boldsymbol{P}\left(\boldsymbol{T}_{P} \mid \boldsymbol{D}\right) P(D)}{\boldsymbol{P}\left(\boldsymbol{T}_{P} \mid \boldsymbol{D}\right) P(D)+P\left(T_{P} \mid D^{c}\right) P\left(D^{c}\right)} \\
& =\frac{\boldsymbol{P}\left(T_{P} \mid \boldsymbol{D}\right) P(D)}{\boldsymbol{P}\left(\boldsymbol{T}_{P} \mid \boldsymbol{D}\right) P(D)+\left(1-\boldsymbol{P}\left(T_{P}^{c} \mid \boldsymbol{D}^{c}\right)\right)(1-P(D))}
\end{aligned}
$$

Positive Predictive Values (PPV)

		Reality	
		Have disease	No disease
Test outcome	+	Sensitivity (True Positive) $\boldsymbol{P}\left(\boldsymbol{T}_{P} \mid \boldsymbol{D}\right)$	False Positive (Type I Error) $\boldsymbol{P}\left(T_{P} \mid \boldsymbol{D}^{c}\right)$
	-	False Negative (Type II Error) $\boldsymbol{P}\left(\boldsymbol{T}_{P}^{c} \mid \boldsymbol{D}\right)$	Specificity (True Negative) $\boldsymbol{P}\left(\boldsymbol{T}_{P}^{c} \mid D^{c}\right)$

$$
\begin{aligned}
\text { PPV: } P\left(D \mid T_{P}\right) & =\frac{\boldsymbol{P}\left(\boldsymbol{T}_{\boldsymbol{P}} \mid \boldsymbol{D}\right) P(D)}{\boldsymbol{P}\left(\boldsymbol{T}_{\boldsymbol{P}} \mid \boldsymbol{D}\right) P(D)+\boldsymbol{P}\left(\boldsymbol{T}_{P} \mid \boldsymbol{D}^{c}\right) P\left(D^{c}\right)} \\
& =\frac{\boldsymbol{P}\left(\boldsymbol{T}_{\boldsymbol{P}} \mid \boldsymbol{D}\right) P(D)}{\boldsymbol{P}\left(\boldsymbol{T}_{\boldsymbol{P}} \mid \boldsymbol{D}\right) P(D)+\left(1-\boldsymbol{P}\left(\boldsymbol{T}_{\boldsymbol{P}}^{c} \mid \boldsymbol{D}^{c}\right)\right)(1-P(D))}
\end{aligned}
$$

In our example,

		Reality	
		Have disease	No disease
	+	Sensitivity (True Positive) $\boldsymbol{P}\left(\boldsymbol{T}_{P} \mid \boldsymbol{D}\right)=1-p_{T E}=0.99$	False Positive (Type I Error) $\boldsymbol{P}\left(T_{P} \mid \boldsymbol{D}^{c}\right)=p_{T E}=0.01$
Test outcome	+	False Negative (Type II Error) $\boldsymbol{P}\left(\boldsymbol{T}_{P}^{c} \mid \boldsymbol{D}\right)=p_{T E}=0.01$	Specificity (True Negative) $\boldsymbol{P}\left(\boldsymbol{T}_{P}^{c} \mid \boldsymbol{D}^{c}\right)=1-p_{T E}=0.99$

$$
\text { PPV: } \begin{aligned}
P\left(D \mid T_{P}\right) & =\frac{\boldsymbol{P}\left(\boldsymbol{T}_{\boldsymbol{P}} \mid \boldsymbol{D}\right) P(D)}{\boldsymbol{P}\left(\boldsymbol{T}_{\boldsymbol{P}} \mid \boldsymbol{D}\right) P(D)+\boldsymbol{P}\left(\boldsymbol{T}_{\boldsymbol{P}} \mid \boldsymbol{D}^{c}\right) P\left(D^{c}\right)} \quad P(D) \equiv p_{D} \\
& =\frac{\boldsymbol{P}\left(\boldsymbol{T}_{\boldsymbol{P}} \mid \boldsymbol{D}\right) P(D)}{\boldsymbol{P}\left(\boldsymbol{T}_{\boldsymbol{P}} \mid \boldsymbol{D}\right) P(D)+\left(1-\boldsymbol{P}\left(\boldsymbol{T}_{\boldsymbol{P}}^{c} \mid \boldsymbol{D}^{c}\right)\right)(1-P(D))} \\
& =\frac{\left(1-p_{T E}\right) p_{D}}{\left(1-p_{T E}\right) p_{D}+p_{T E}\left(1-p_{D}\right)}
\end{aligned}
$$

In our example,

When different value of p_{D} is assumed, We get different value of $P\left(D \mid T_{\mathrm{P}}\right)$.
Conclusion: Any value (between 0 and 1) can be obtained by varying the value of p_{D}.

$$
\begin{aligned}
\text { PPV: } P\left(D \mid T_{P}\right) & =\frac{\boldsymbol{P}\left(\boldsymbol{T}_{\boldsymbol{P}} \mid \boldsymbol{D}\right) P(D)}{\boldsymbol{P}\left(\boldsymbol{T}_{\boldsymbol{P}} \mid \boldsymbol{D}\right) P(D)+\boldsymbol{P}\left(T_{P} \mid \boldsymbol{D}^{c}\right) P\left(D^{c}\right)} \\
& =\frac{\boldsymbol{P}\left(\boldsymbol{T}_{\boldsymbol{P}} \mid \boldsymbol{D}\right) P(D)}{\boldsymbol{P}\left(\boldsymbol{T}_{P} \mid \boldsymbol{D}\right) P(D)+\left(1-\boldsymbol{P}\left(\boldsymbol{T}_{P}^{c} \mid D^{c}\right)\right)(1-P(D))} \\
& =\frac{\left(1-p_{T E}\right) p_{D}}{\left(1-p_{T E}\right) p_{D}+p_{T E}\left(1-p_{D}\right)}
\end{aligned}
$$

In log scale...

Wrap-up

- Q1: What is the probability that the person actually has the disease?
- A1:The answer actually depends on how common or how rare the disease is! (The answer depends on the value of P_{D}.)
- Q2: Can the answer be 1% or 2% ?
- A2:Yes.
- Q3: Can the answer be 50% ?
- A3:Yes.

Prosecutor's fallacy

- Criminal trial for murder
- "one of the biggest media events of 1994-95"
- "the most publicized criminal trial in in American history"
- Often characterized as "the trial of the century"
- O. J. Simpson
- At the time a well-known celebrity famous both as a TV actor and as a retired professional football star.
- Defense lawyer: Alan Dershowitz
- Renowned attorney and Harvard Law School professor

The murder of Nicole

- Nicole Brown was murdered at her home in Los Angeles on the night of June 12, 1994.
- So was her friend Ronald Goldman.
- The prime sulinispentect was her (ex-) husband O.J. Simpson.
- (They were divorced in 1992.)

Prosecutor* $=$ a government official who conducts criminal prosecutions on behalf of the state (พนักงานอัยการ)

Prosecutors' argument

- Prosecutors* spent the first ten days of the trial entering evidence of Simpson's history of physically abusing her and claimed that this alone was a good reason to suspect him of her murder.
- As they put it, "a slap is a prelude to homicide."

Counterargument
 (ทนายฝ่ายจำเลย)

- The defense attorneys argued
- that the prosecution* had spent two weeks trying to mislead the jury
- and that the evidence that O. J. had battered Nicole on previous occasions meant nothing.
- Dershowitz's reasoning:
- 4 million women are battered annually by husbands and boyfriends in the US.
- In 1992, a total of 1,432 , or 1 in 2,500 , were killed by their (ex)husbands or boyfriends.
- Therefore, few men who slap or beat their domestic partners go on to murder them.
- True? ...Yes...Convincing?

The verdict:

Not guilly for the two murders!

The verdict was seen live on TV by more than half of the U.S. population, making it one of the most watched events in American TV history.

The Truth: Another number...

- It is important to make use of the crucial fact that Nicole Brown was murdered.
- The relevant number is not the probability that a man who batters his wife will go on to kill her (1 in 2,500) but rather the probability that a battered wife who was murdered was murdered by her abuser.

This event has happened and should be used in probability evaluation

A Simplified Diagram

Physically abused
(battered) by husband

A Simplified Diagram

Physically abused
(battered) by husband

1 in 2,500
(0.04\%)

Murdered by husband

A Simplified Diagram

Physically abused
(battered) by husband

1 in 2,500
(0.04\%)

The Truth: Another number...

- It is important to make use of the crucial fact that Nicole Brown was murdered.
- The relevant number is not the probability that a man who batters his wife will go on to kill her (1 in 2,500) but rather the probability that a battered wife who was murdered was murdered by her abuser.
_ This event has happened and should be used in probability evaluation
- According to the Uniform Crime Reports for the United States and Its Possessions in 1993, the probability Dershowitz (or the prosecution) should have reported was this one: of all the battered women murdered in the United States in 1993, some 90 percent were killed by their abuser.
- That statistic was not mentioned at the trial.

Probability Comparison

1 in 2,500
(0.04\%)

90\%

